Getting Started with NI SoftMotion”™
Development Module for LabVIEW"

Contents

INErOAUCHION......eeiiiiiieiiiiciecce e 1
CONVENTIONS ...ttt ettt ettt sttt ne e e 3
NI SoftMotion Development Module Components..............ccccecueeeenenne 3
System Requirementsccooeceeririieninieniniienecieseeeeee e 4
Installing the NI SoftMotion Development Module.............cccecoenenneee. 5
NI SoftMotion Development Module Documentationc..cccccuee.. 6
Typical Motion SYSteM........cc.eecueriiriiriieiiiieienieeeeneeeese e 6
TYPES Of MOVES ...ttt 9
CONLOULIIEZ ..ttt 12
NI SoftMotion Development Module Examples...........c.cccccccenieninne. 14

Introduction

This manual is designed to get you started with the NI SoftMotion Development Module for LabVIEW. It
includes overview information about the software as well as reference information for the example VIs that are
included with the NI SoftMotion Development Module.

‘7 NATIONAL
’ INSTRUMENTS'

The NI SoftMotion Development Module for LabVIEW provides VIs and functions that allow you to build
custom motion controllers using the LabVIEW Real-Time Module and National Instruments Reconfigurable
I/0 (RIO) devices, data acquisition (DAQ) devices, or Compact FieldPoint (cFP).

The NI SoftMotion Development Module allows you to do path planning, trajectory generation, output control,
and PID loop control. The following illustration shows several options for using the NI SoftMotion

Development Module with National Instruments hardware products.

Programming|| Supervisory Trajectory Interpolation Position / 1/0 Current Y,
Control Generation Velocity Loop \X
Control Loop IZ
Stage
E [—— "m T Heiinl
=4 User, Event, /0 .
L e | . NN\ || Ampiification lb_
' 20 mA 3A Motor
Feedback I/0
NI SoftMotion, 250 us / axis NI SoftMotion Dri Motor /
LabVIEW Real-Time ETS / RTX LabVIEW FPGA, FPGA Board, 5 s rive Stage
NI SoftMotion, 2.5 ms / axis NI SoftMotion Dri Motor /
LabVIEW Real-Time ETS LabVIEW FPGA, cRIO, 5 ps lve Stage
LabVIEW / . . . Motor /
Motion Asst. Motion Controller, 62.5 us / axis Drive Stage
NI SoftMotion, 250 us / axis DAQ Drive Motor /
LabVIEW Real-Time ETS Board Stage
NI SoftMotion, 5 ms / axis Fp Dri Motor /
LabVIEW Real-Time ETS ¢ rve Stage

Figure 1. Possible Combinations of the NI SoftMotion Development Module and NI Hardware

Refer to the documentation for the LabVIEW Real-Time Module, the LabVIEW FPGA Module, the LabVIEW
Simulation Module, and the LabVIEW Control Design Toolkit for information about system requirements,
installation, and configuration of these products.

Getting Started with NI SoftMotion Development Module for LabVIEW

ni.com

Conventions

»

5
bold

italic

monospace

The following conventions are used in this guide:

The » symbol leads you through nested menu items and dialog box options to a final action. The sequence
File»Page Setup»Options directs you to pull down the File menu, select the Page Setup item, and select
Options from the last dialog box.

This icon denotes a note, which alerts you to important information.

Bold text denotes items that you must select or click in the software, such as menu items and dialog box options.
Bold text also denotes parameter names.

Italic text denotes variables, emphasis, a cross reference, or an introduction to a key concept. This font also
denotes text that is a placeholder for a word or value that you must supply.

Text in this font denotes text or characters that you should enter from the keyboard, sections of code,
programming examples, and syntax examples. This font is also used for the proper names of disk drives, paths,
directories, programs, subprograms, subroutines, device names, functions, operations, variables, filenames, and
extensions.

NI SoftMotion Development Module Components

The NI SoftMotion Development Module includes a trajectory generator, Spline Engine, and source code for a
PID control loop and encoder.

Table 1 lists each of the NI SoftMotion Development Module components, the LabVIEW platform under which
each component can run, and a description of how each component is used.

© National Instruments Corporation 3 Getting Started with NI SoftMotion Development Module for LabVIEW

Table 1

. NI SoftMotion Development Module Requirements and Uses

Component

NI Platform

Use

Trajectory generator

LabVIEW Real-Time Module

Design, compile, and run the trajectory
generator for a Real-Time (RT) target.

Spline Engine LabVIEW Real-Time and Design and compile the Spline Engine
LabVIEW FPGA Modules for an RT target, or download it to an
FPGA target.
PID control loop LabVIEW Real-Time and Design and compile fixed-point PID
LabVIEW FPGA Modules implementation for an RT target, or
download it to an FPGA target.
Encoder LabVIEW FPGA Modules Design and compile the encoder to

download to an FPGA target.

System Requirements

Platform and system requirements for the NI SoftMotion Development Module depend on the hardware you are
using. The following list contains basic system requirements that pertain to the software only.

e LabVIEW 7.1 or later

e LabVIEW Real-Time Module 7.1 or later

* LabVIEW FPGA Module

1.1 or later

Refer to the appropriate hardware documentation for complete system requirements.

Getting Started with NI SoftMotion Development Module for LabVIEW

ni.com

Installing the NI SoftMotion Development Module

@ Note To install the NI SoftMotion Development Module on a Windows 2000/XP system, you must be logged in with
Administrator privileges.

1. Insert the NI SoftMotion Development Module for LabVIEW CD into the CD-ROM drive.
If you have autorun enabled, autorun. exe runs automatically.
2. If you do not have autorun enabled, double-click autorun. exe.
Follow the onscreen instructions.
By default, the NI SoftMotion Development Module installation program adds the following items to the listed
directories in your LabVIEW installation location:
* examples\Motion\SoftMotion folder—Example VIs
* help folder—NI SoftMotion Development Module for LabVIEW Help

e manuals folder—This manual

@ Note The NI SoftMotion Development Module installation program also installs the readme_NISoftMotion.rtf file in
your LabVIEW folder.

Additional Installation Instructions for RIO Users

If you are using the NI SoftMotion Development Module for LabVIEW with a National Instruments RIO
device, such as a CompactRIO I/O Module, you must modify the LabVIEW Functions palette to include an icon
for the NI SoftMotion palette. This palette includes the Spline Engine V1.

Complete the following steps to add the NI SoftMotion palette icon to the LabVIEW Functions palette:
1. Launch LabVIEW.

2. Click Tools»Advanced»Edit Palette Views.

3. Select FPGA Hardware in Palette view.

© National Instruments Corporation 5 Getting Started with NI SoftMotion Development Module for LabVIEW

4. In the Functions palette view that appears, position the mouse pointer where you want to place the
NI SoftMotion palette.

Right-click and select Insert>Submenu.
Select Link to an existing menu file (.mnu) and click OK.

Select nisoftmotion_fpga.mnu and click Open.

S A

Click Save Changes.

NI SoftMotion Development Module Documentation

In addition to this manual, the NI SoftMotion Development Module includes the NI SoftMotion Development
Module for LabVIEW Help. This help file provides VI and function reference information for the NI SoftMotion
Development Module VIs and functions. You can access this file from the Help menu in LabVIEW.

Typical Motion System

A motion controller is the center of a typical motion system, which consists of supervisory control, trajectory
generation Spline Engine, control loop, and I/O.

The controller converts high-level commands from the user into command signals used by drives to move
actuators. The motion controller also monitors the system for error conditions, faults, and asynchronous events
that can cause the system to change speed, direction, or start/stop the actuators. Figure 2 illustrates the parts and
processes of a typical motion system.

Getting Started with NI SoftMotion Development Module for LabVIEW 6 ni.com

Trajectory Generation
(ms)

.)
. * Cruise .
A % N
) , \
Supervisory Control K \ Control Loop (us)
(ms) [S 2 \ (with Interpolation)
------ - DoElg &) el
User API S 2 ! e N
<4 Interface AN ! 4 AN
ANRY - A \
N L AN % |
7 '
\

’
.
\
I’ \‘\
[N SetPo\{A o
A Interpolation
T
\
\

i
'
' Supervisory [commands For <
' Control Trajectory Generator el _-
' -

) T

\ '

\ ' \
»)/ New \ /
| Event Monitoring Interface | 7 Set AN J
Point S I
Updated Sl -

4} _____ -7 Updates
Trajectory
Generator
Sensor

1/0
Based on
1/0 And User
Response

Figure 2. Three Loops of a Typical Motion Control System

The supervisory control is the main loop of the motion control system. This loop intercepts commands from the

Supervisory Control
user, and signals the trajectory generator to start or stop moves. The supervisory control loop also monitors all

I/0 needed to perform initialization tasks, such as finding the reference or origin. This loop also monitors the

system for faults, and aids in synchronizing moves relative to changes in external conditions.

5

© MNational Instruments Corporation

Note The NI SoftMotion Development Module does not contain VIs and functions for supervisory control. For examples of

supervisory control, refer to the NI SoftMotion Development Module Examples section of this manual.

Getting Started with NI SoftMotion Development Module for LabVIEW

Trajectory Generator

Spline Engine

Control Loop

The trajectory generator is a path planner that creates set points for the control loop. The trajectory generator
creates new set points every loop period, based on move constraints provided by the user. These move
constraints include the maximum velocity, maximum acceleration/deceleration, and maximum jerk that the
mechanical system can tolerate. The set points created by the trajectory generator do not violate the specified
move constraints.

The Spline Engine function uses a cubic spline algorithm and four set points to calculate interpolated positions
between two positions from the trajectory generator.

Using the Spline Engine function results in smoother motion and allows you to run the trajectory generator loop
slower than the control loop.

The control loop creates the command signal based on the set point provided by the trajectory generator. In most
cases, the control loop includes both a position and a velocity loop, but in some cases the control loop may
include only a position loop.

The position is typically read from encoders, but also may be read from analog inputs. The velocity is calculated
from the position values that are read. The velocity also may be read directly from a velocity sensor, such as a
tachometer.

Because no feedback is required for stepper motors, the control loop converts the set point generated by the
trajectory generator into stepper signals (step/direction).

For control loop implementation, the NI SoftMotion Development Module provides LabVIEW source code for
an enhanced PID implementation of the control loop. The source code is installed to <LabVIEW>\examples\
motion\SoftMotion\ControlLoop.

@ Note The NI SoftMotion Development Module does not currently include source code to convert trajectory generator output
to stepper signals.

Getting Started with NI SoftMotion Development Module for LabVIEW 8 ni.com

1/0

Analog and digital I/O is required to send the command signals to the drives and receive feedback from the
actuators. Some servo motor drives use analog I/O to receive feedback. However, most I/O requirements for
motion controllers are digital. For example, feedback from quadrature encoders requires digital I/O.

Table 2 lists the NI SoftMotion Development Module VIs you use for decoding quadrature encoder signals.

Table 2. Encoder VIs

Device VI Installation Location
CompactRIO _CRIO Target Loop <LabVIEW>\examples\Motion\SoftMotion\
CompactRio\Gantry\FPGA

RIO Control Loop (with Spline) <LabVIEW>\examples\Motion\SoftMotion\RIO

RIO Control Loop (with velocity <LabVIEW>\examples\Motion\SoftMotion\RIO
feedback)

RIO Control Loop (with Vff and <LabVIEW>\examples\Motion\SoftMotion\RIO
Aff)

RIO Simple Control Loop <LabVIEW>\examples\Motion\SoftMotion\RIO

Types of Moves

The following sections describe the types of moves commonly found in motion control systems.

Arc Moves

An arc move causes a coordinate space of axes to move on a circular, spherical, or helical path. You can move
a two-dimensional vector space on a circular path. You can move a three-dimensional vector space on a
spherical or helical path.

© MNational Instruments Corporation 9 Getting Started with NI SoftMotion Development Module for LabVIEW

Table 3 lists the NI SoftMotion Development Module function you use for arc moves.

Table 3. NI SoftMotion Development Module Arc Move Function

Function Use

Arc Move Read/Write Set or get the properties for a circular,
helical, or spherical arc move. All arc

moves are treated as relative to the
current position. You can set or get
arc move properties only from
coordinates.

Refer to the NI SoftMotion Development Module for LabVIEW Help for more information about the Arc Move
Read/Write function.

Straight-Line Moves

Straight-line moves use the desired target position to generate the move trajectory. For example, if the motor is
currently at position zero, and the target position is 100, the straight-line move creates a trajectory that moves
100 counts or steps.

Table 4 lists the NI SoftMotion Development Module function you use for straight-line moves.

Table 4. NI SoftMotion Development Module Straight-Line Move Function

Function Use

Straight Line Move Read/Write Set or get parameters for a straight
line move. You can read and write

these properties for both axes and
coordinates.

Refer to the NI SoftMotion Development Module for LabVIEW Help for more information about the Straight
Line Move Read/Write function.

Getting Started with NI SoftMotion Development Module for LabVIEW 10 ni.com

Blending

The NI SoftMotion Development Module allows you to blend moves. Blending is a software feature that
automatically creates a smooth transition between consecutive moves. Moves configured for blending execute
concurrently for a period of time, which results in continuous motion between moves.

Because the deceleration portion of the blended move is modified by the subsequent move, it may not reach its
end point. You can change the move constraints for each blended move to create a move profile that suits your
requirements. Figure 3 shows two blended moves.

Velocity E?gig
en

Time

Blend Complete

Figure 3. Blending Two Moves

Blending executes moves concurrently. When you blend the second move, both moves are executing. The first
move is generating its trajectory while the second move is waiting for the blending to complete. The second
move starts based on the user-specified blend mode. Blend mode options include blend at deceleration, blend
after profile complete, and blend after a specified delay.

Table 5 lists the NI SoftMotion Development Module functions you use to implement blending in your
application.

© MNational Instruments Corporation 11 Getting Started with NI SoftMotion Development Module for LabVIEW

Table 5. NI SoftMotion Development Module Blending Functions

Function Use

Trajectory Generator Method—Start Execute a blend when Type is set to
Blend Motion.

Trajectory Generator Method—Start Multiple Execute a blend when Type is set to
Blend Motion.

Move Constraints Read/Write Set the Blend Delay and Blend
Mode properties.

Trajectory Generator Method—Execution Data Get the Blend Complete and Profile
Complete parameters of the Status
property.

Refer to the NI SoftMotion Development Module for LabVIEW Help for more information about blending
functions.

Contouring

Contouring consists of a user-defined pattern of moves applied to an axis or a coordinate space of axes.
Contoured moves are appropriate when you need a trajectory that cannot be constructed from straight lines and
arcs. Instead of using the trajectory generator, the controller takes an array of position data during a contoured
move and splines the data before outputting it. This calculation ensures smooth motion by creating intermediate
points using a cubic spline algorithm. The basic trajectory move constraints—maximum velocity, acceleration,
and deceleration—have no effect on contoured moves.

All contoured moves are relative. Motion starts from the position of the axis, or axes, at the time the contouring
move starts. This is similar to the way arc moves are configured.

Table 6 lists the NI SoftMotion Development Module functions you use to implement contouring in your
application.

Getting Started with NI SoftMotion Development Module for LabVIEW 12 ni.com

Table 6. NI SoftMotion Development Module Contouring Functions

Function Use

Contouring Move Read/Write Set and get the properties on a
contouring buffer.

Contouring Move Create Buffer Create a buffer for contouring, and
return a handle to the buffer.

Contouring Move Delete Buffer Delete the contouring buffer.

Contouring Move Method—Check Buffer Space Retrieve the number of elements
available for updating.

Contouring Move Method—Enable Enable or disable a buffer.

Contouring Move Method—Stop Signal the final iteration of a
continuous buffer, and stop the move
once the end of the buffer is reached.

Contouring Move Method—Update Points Replace points previously written to a
buffer with newer points.

Contouring Move Method—Write Points Write points to the buffer for the first
time.

Refer to the NI SoftMotion Development Module for LabVIEW Help for more information about contouring
functions.

© MNational Instruments Corporation 13 Getting Started with NI SoftMotion Development Module for LabVIEW

NI SoftMotion Development Module Examples

This section outlines each of the examples installed with the NI SoftMotion Development Module for
LabVIEW. Each example consists of a Motion Loop VI and a set of application VIs.

The Motion Loop VI performs the function of a motion controller in a typical motion control system. This VI
implements the code required to interact with I/O, read in trajectory generator information, calculate the move
profile, write the move profile information, and calculate the control output.

The application VIs interact with the Motion Loop VI to change the state of the Motion Loop VI and get the
status from the Motion Loop VI.

Compact FieldPoint

The following sections describe the Compact FieldPoint example installed with the NI SoftMotion
Development Module. This example uses a Compact FieldPoint device to independently control two motors.

cFP Motion Loop Vi

Figure 4 shows the block diagram of the cFP Motion Loop VI, which implements a motion controller for two
axes of motion on a Compact FieldPoint device.

Getting Started with NI SoftMotion Development Module for LabVIEW 14 ni.com

\4
rrorin ino Error

=
=

Murnber of axes
2

oo Error] v

v Thel main motion lopp that updates thé variables and thelljG]

Run the PID loop and the host loop every 10 ms P s '!l
Eﬂ IUUUX G" ImoonoooooDoOooooooo0oog

0[O

“z, (10000 5

Q‘ Fiobion [rdad] Caldlate e

2O

v Load Read
PID
Ea \4 D~ i 4 \4 :
onfi F reatd] [] . o
0
i @. T = L1 em : Calc Wirite
Loop Rate (Al)
—r Host OOoOoOoooooo0o0oooooooooog
—r Target
.Finished Late [i-1]] ||.Stop Mation Loop ||
[Trajectary Generator v Etop|
El-{ m Foror
o g 0

fira ectory Generator Reference '7

Hold reference to self - so that the VI
continues executing even after Start Loop
skops executing

Figure 4. cFP Motion Loop VI Block Diagram

Table 7. Description of the cFP Motion Loop VI Block Diagram

Callout Number

VI, Function, or Variable Name and Description

LabVIEW Error Handler VI checks for errors before beginning the loop.

User-designed VI determines what I/O to use on the Compact FieldPoint device, such as encoders,
analog devices, and so on.

Trajectory Generator Create function opens a reference to the trajectory generator. Always execute this
function prior to making any calls into the trajectory generator.

© MNational Instruments Corporation

15 Getting Started with NI SoftMotion Development Module for LabVIEW

Table 7. Description of the cFP Motion Loop VI Block Diagram (Continued)

Callout Number VI, Function, or Variable Name and Description

4 Trajectory Generator Method—Loop Rate method sets up the loop rate for the trajectory generator and
motion loop.

5 User-designed VI allocates memory on the Compact FieldPoint device. This VI improves the
performance of the application because it allocates memory only once rather than each time the VI
loops. Use this VI to allocate memory for the following items:

» Execution status data

* Axis data

e Trajectory data

* Array of axis handles

* Additional arrays that contain other state data
* Control output values

e PID parameters

6 User-designed VI configures the PID parameters for the axes.

7 LabVIEW Timed Loop. Use this node to set up loop timing.

8 LabVIEW Open VI Reference VI opens a reference to the VI specified by the path wired in.

9 User-designed VI reads in data from encoders and global variables.

10 User-designed VI executes the NI SoftMotion Module trajectory generator and call the control loop to
calculate command output values.

11 User-designed VI writes the command output values to the I/O on the Compact FieldPoint device.

12 User-designed VI frees the memory you allocated on the Compact FieldPoint device.

Getting Started with NI SoftMotion Development Module for LabVIEW 16 ni.com

Table 7. Description of the cFP Motion Loop VI Block Diagram (Continued)

Callout Number VI, Function, or Variable Name and Description
13 The Trajectory Generator Delete function frees the memory allocated for the trajectory generator you
created.
14 LabVIEW Error Handler VI shows any errors that occurred.

Application VI
Figure 5 shows the block diagram for the cFP Main VI. This VI creates two independent straight-line moves
using two different axes.

@ Note For this example to work properly, the cFP Motion Loop VI must be running in the background. You can synchronize
the Motion Loop VI with the Application VI in one of several ways. For example, you can use a VI from the Advanced»
Synchronization»Rendevous palette. Or, you can use the VI Server to dynamically run the VI. For information about
synchronizing VIs, refer to the Rendezvous VIs topic or the VI Server topic in LabVIEW Help. Also, refer to the What Is a
Rendezvous? and/or Dynamically Load and Run a VI without Opening its Front Panel Using VI Server and Rendezvous VIs

articles on the NI Developer Zone.

© MNational Instruments Corporation 17 Getting Started with NI SoftMotion Development Module for LabVIEW

e the motiol
Bis Index 1 —

Current Position 2] |ourrent Pogition 1

= n Current Positicn

1]
A4
: Current Position

'|Enab|-: Line i f T "
At "-Im - b=l E’ B I~ —

Ioperation Mode

Profile Complete
Inactive

Profile Complete [
Inactive

Figure 5. cFP Main VI Block Diagram

Getting Started with NI SoftMotion Development Module for LabVIEW 18 ni.com

Table 8. Description of the cFP Main VI Block Diagram

Callout Number VI, Function, or Variable Name and Description

1 User-defined VI enables the axes.

2 User-defined VI specifies the position, acceleration, deceleration, and operation mode for a particular
axis.

3 User-defined VI reads the execution status for the specified axis.

4 User-defined VI reads the axis data for the specified axis.

5 LabVIEW Merge Errors VI. Use this VI to merge error I/O clusters from different functions. This VI
first looks for errors among error in 1, error in 2, and error in 3, then error array in, and reports the
first error found. If the VI finds no errors, it looks for warnings, and returns the first warning found. If
the VI finds no warnings, it returns no error.

6 User-defined VI disables the axes.

M Series DAQ Device

The following sections describe the M Series DAQ Device Gantry example installed with the NI SoftMotion
Development Module. This example implements a motion controller for three axes using an M Series DAQ
device. Two of the axes in the example are controlled as an xy coordinate. The third axis is controlled
individually as the z-axis. These three axes together constitute a gantry system.

M Series Motion Loop VI

Figure 6 shows the block diagram of the M Series Motion Loop VI. This VI Implements a motion controller for
one coordinate, consisting of two axes, and one independent axis on an M Series DAQ device.

© MNational Instruments Corporation 19 Getting Started with NI SoftMotion Development Module for LabVIEW

@ ® ® O 606 0O®®» O @ @ QG 6GE G
Tlka Error [~]
[Flum the PID Too and the Fost Toop ebery 1 5] . — Tme main mition loop that updates the variagples and the: /0] -
i ol B '
ot i
2 Mﬁ Oo0
3 [Hction]
s ||| Fd
EI LF?I?:? Read
A\ [
lerar in [ho emor Dl?g = Wem [i I
l_=—_n 7l Loop Rate [Al] Predllocate Memary 1000000000000 0000000
—r Host and load PID gains | [E
L Target 0 @ Stop Motion Loop E
Initialize the DAL tasks and cieate the hajectony generatar Hold reference to zelf - o that the Finizhed Late [i-1] .
| continues execuling even after
Start Loop stops executing
[l
Figure 6. M Series Motion Loop VI Block Diagram
Table 9. Description of the M Series Device Motion Loop VI Block Diagram
Callout Number VI, Function, or Variable Name and Description
1 LabVIEW Error Handler VI checks for errors before beginning the loop.
2 User-defined VI determines what I/O to use on the M Series DAQ device, such as encoders and
analog devices.
3 Trajectory Generator Create function opens a reference to the trajectory generator. Always execute
this function prior to making any calls into the trajectory generator.

Getting Started with NI SoftMotion Development Module for LabVIEW 20 ni.com

Table 9. Description of the M Series Device Motion Loop VI Block Diagram (Continued)

Callout Number VI, Function, or Variable Name and Description

4 Trajectory Generator Method—Loop Rate Method sets up the loop rate for the trajectory generator
and motion loop.

5 User-defined VI allocates memory on the DAQ M Series device. This VI improves the performance
of the application because it allocates the memory only once rather than each time the VI loops.
Use this VI to allocate memory for the following items:

» Execution status data

* Axis data

e Trajectory data

* Array of axis handles

* Additional arrays that contain other state data
* Control output values

e PID parameters

6 User-defined VI configures the PID parameters for the axes.

7 LabVIEW Timed Loop node. Use this node to set up loop timing.

8 LabVIEW Open VI Reference VI opens a reference to the VI specified by the path wired in.

9 User-defined VI reads in data from encoders and global variables.

10 User-defined VI executes the NI SoftMotion Module trajectory generator and call the control loop
to calculate command output values.

11 User-defined VI writes the command output values to the I/O on the M Series DAQ device.

12 User-defined VI frees the memory you allocated.

13 Trajectory Generator Delete function frees the memory allocated for the trajectory generator you

created.

© MNational Instruments Corporation 21 Getting Started with NI SoftMotion Development Module for LabVIEW

Table 9. Description of the M Series Device Motion Loop VI Block Diagram (Continued)

Callout Number VI, Function, or Variable Name and Description
14 User-defined VI releases the I/O you previously configured.
15 LabVIEW Merge Errors VI. Use this VI to merge error I/O clusters from different functions. This

VI first looks for errors among error in 1, error in 2, and error in 3, then error array in, and
reports the first error found. If the VI finds no errors, it looks for warnings, and returns the first
warning found. If the VI finds no warnings, it returns no error.

16 LabVIEW Error Handler VI shows any errors that occurred.

Application VI

Figure 7 shows the block diagram of the M Series Gantry Cycle VI. This VI repeatedly cycles through a set of
given positions resulting in coordinate motion along the x- and y- axes and vertical motion along the z-axis.

@ Note For this example to work properly, the M Series Motion Loop VI must be running in the background. You can
synchronize the Motion Loop VI with the Application VI in one of several ways. For example, you can use a VI from the
Advanced»Synchronization»Rendevous palette. Or, you can use the VI Server to dynamically run the VI. For information
about synchronizing VIs, refer to the Rendezvous Vls topic or the VI Server topic in LabVIEW Help. Also, refer to the What Is
a Rendezvous? and/or Dynamically Load and Run a VI without Opening its Front Panel Using VI Server and Rendezvous VIs
articles on the NI Developer Zone.

Getting Started with NI SoftMotion Development Module for LabVIEW 22 ni.com

O

® & O o
Mote:
Make sure the mation loop (MSeties Motipn Loop. v} is runnjng before execiting this Y,
[o]
Axds Cycle Positon|
fiza \ 4
=HE)

\ Al AR \4 .
Mowe ko a position, mowve poononnoeEnnon
Ao | the z-axis down then up
=l [E@}H|[Mave Loop Stopped ™
En > oH | Bl
Axes 22
ove Loop Stoppe:

Axes
Ooo0o0o0o0o0o0o0o0o0n

[Clear Graph|

Build =¥ Graph
Input
¥ Input
=¥ Graph i
1%

A

Lo Totais]

Move Loop Stopped

Figure 7. M Series Gantry Cycle VI Block Diagram

© MNational Instruments Corporation

23 Getting Started with NI SoftMotion Development Module for LabVIEW

Table 10. Description of M Series Gantry Cycle VI Block Diagram

Callout Number VI, Function, or Variable Name and Description
1 User-defined VI enables the axes.
2 User-defined VI specifies the following move constraints:

» Target position

* Velocity

e Acceleration rate
e Deceleration rate

e Jerk values for both the acceleration and deceleration

3 User-defined VI moves the motor up and back on the z-axis after reaching the position specified in
the previous VL.

4 LabVIEW Wait Until Next ms Multiple VI. Use this VI to specify a delay for the While Loop.
5 Case statement and global variable used to determine if motion has stopped.
6 LabVIEW Merge Errors VI. Use this VI to merge error I/O clusters from different functions. This

VI first looks for errors among error in 1, error in 2, and error in 3, then error array in, and
reports the first error found. If the VI finds no errors, it looks for warnings, and returns the first
warning found. If the VI finds no warnings, it returns no error.

7 User-defined VI disables the axes.

8 While Loop to read the current axes position using a user-defined VI, and then graph the position
using the Build XY Graph Express VI

Getting Started with NI SoftMotion Development Module for LabVIEW 24 ni.com

cR10-9104

The following sections describe the cRIO-9104 example installed with the NI SoftMotion Development
Module. This example implements a motion controller for three axes using the cRIO-9104. Two of the axes in
the example are controlled as an xy coordinate. The third axis is controlled individually as the z-axis. These
three axes together constitute a gantry system.

@ Note In this example, the control loop runs on the FPGA, and the trajectory generator runs on the RT system.

cRI0 Motion Loop VI

Figure 8 shows the block diagram of the cRIO Motion Loop VI. This VI Implements a motion controller for
one coordinate, consisting of two axes, and one independent axis on the cRIO-9104.

© MNational Instruments Corporation 25 Getting Started with NI SoftMotion Development Module for LabVIEW

+ (Mo Endr ~
The mdin motian [oop that updates the varables and the [70
Fiost Update Fiat e O s
[Host Updste Rate] =
DDDSDS ate nate s G'" (< N=NeN= NeN=NeNeNsN=N=NeNeNeNeN+NeNeNe}=p=RensN=N=N N =R=R=Nr]
: AR [f: [Figad] [Coloiiate] [iufie]
[Fimber of ¢ 1000
et of aes
[=nor in (Mo ermor) i e
E A 7 v
3104 dp e Ll =+ &
b Loop Fatelus Logp Rate 4]
Taige! Laop Rateli5es T‘M‘ 7% A
it
250) f P Tamet e ~
1000000
TAAAAARARTACAATAAAAAAL AAAARARAH
e
Tnitalizs the FI0 FPGA and Configure the host and target Finished Late [i1] @5 10p Motion Loop |-
create the tajectory generator| update rates
flag @]
=
@ o [Frun the PID Ioop nd the host loop vers 1 me]
o T =

Hold reference to sel - sa thal the VI continues
executing even after Start Loap stops executing

Figure 8. cRIO Motion Loop VI Block Diagram

Table 11. Description of cRIO Motion Loop VI Block Diagram

Callout Number VI, Function, or Variable Name and Description
1 LabVIEW Error Handler VI checks for errors before beginning the loop.
2 LabVIEW Open FPGA VI Reference VI determines what I/O you use on the cRIO-9104, which

includes analog and digital I/O. This VI starts the _CRIO Target Loop VI, which implements the control
loop and the encoder. Opening this reference allows the Motion Loop VI to access all the registers, or
controls and indicators, on the _CRIO Target Loop VI.

3 Trajectory Generator Create function opens a reference to the trajectory generator. Always execute this
function prior to making any calls into the trajectory generator.

Getting Started with NI SoftMotion Development Module for LabVIEW 26 ni.com

Table 11. Description of cRIO Motion Loop VI Block Diagram (Continued)

Callout Number VI, Function, or Variable Name and Description
4 LabVIEW Read/Write Control. Use this node to set the control loop rate for the FPGA control loop.
5 Trajectory Generator Method—Loop Rate method sets the loop rate for the trajectory generator and PID
on the FPGA.
6 User-defined VI allocates memory on the cRIO-9104 device. This VI improves the performance of the

application because it allocates the memory only once, rather than each time the VI loops. Use this VI
to allocate memory for the following items:

» Execution status data

* Axis data

* Trajectory data

* Array of axis handles

* Additional arrays that contain other state data
* Control output values

e PID parameters

7 User-defined VI configures the PID parameters for the axes.

8 LabVIEW Timed Loop node. Use this node to set up loop timing.

9 LabVIEW Open VI Reference VI opens a reference to the VI specified by the path wired in.

10 User-defined VI reads in data from encoders and global variables.

11 User-defined VI executes the NI SoftMotion Module trajectory generator and call the control loop to
calculate and write the command output values.

12 User-defined VI writes the command output values to the I/O on the cRIO-9104 device.

13 User-defined VI to frees the memory you allocated.

14 Trajectory Generator Delete function frees the memory allocated for the trajectory generator you
created.

© MNational Instruments Corporation 27 Getting Started with NI SoftMotion Development Module for LabVIEW

Table 11. Description of cRIO Motion Loop VI Block Diagram (Continued)

Callout Number VI, Function, or Variable Name and Description
15 LabVIEW Close FPGA VI Reference VI closes the reference to the VI you previously opened.
16 LabVIEW Merge Errors VI. Use this VI to merge error I/O clusters from different functions. This VI

first looks for errors among error in 1, error in 2, and error in 3, then error array in, and reports the
first error found. If the VI finds no errors, it looks for warnings, and returns the first warning found. If
the VI finds no warnings, it returns no error.

17 LabVIEW Error Handler VI shows any errors that occurred.

Getting Started with NI SoftMotion Development Module for LabVIEW 28 ni.com

Application VI

Figure 9 shows the block diagram of the cRIO Gantry Cycle VI. This VI repeatedly cycles through a set of given
positions resulting in coordinate motion along the x- and y- axes and vertical motion along the z-axis.

@ Note For this example to work properly, the cRIO Motion Loop VI must be running in the background. You can synchronize
the Motion Loop VI with the Application VI in one of several ways. For example, you can use a VI from the Advanced»
Synchronization»Rendevous palette. Or, you can use the VI Server to dynamically run the VI. For information about
synchronizing Vs, refer to the Rendezvous Vs topic or the VI Server topic in LabVIEW Help. Also, refer to the What Is a
Rendezvous? and/or Dynamically Load and Run a VI without Opening its Front Panel Using VI Server and Rendezvous VIs
articles on the NI Developer Zone.

© @ ®)

Make sure the motion loop (CRIO Mation Loop, 4l is running before exequking this Y1, ‘

=0 ||fz00000
200000

e 1]

=0 |
]
Errar in (no error)

ove
1 z 5]
...... ;E.}

o I =3 =

Figure 9. cRIO Gantry Cycle VI Block Diagram

© MNational Instruments Corporation 29 Getting Started with NI SoftMotion Development Module for LabVIEW

Table 12. Description of cRIO Gantry Cycle VI Block Diagram

Callout Number VI, Function, or Variable Name and Description
1 User-defined VI specifies the following move constraints:
* Target position
* Velocity
e Acceleration rate
e Deceleration rate
e Jerk values for both the acceleration and deceleration
2 User-defined VI moves the motor on the z-axis after reaching the position specified in the
previous VI
3 LabVIEW Wait Until Next ms Multiple VI. Use this VI to specify a delay for the While Loop.
4 LabVIEW Error Handler VI shows any errors that occurred.

Getting Started with NI SoftMotion Development Module for LabVIEW 30

ni.com

CompactRIO™, FieldPoint™, LabVIEW™, National Instruments™, NI™, ni.com™, NI Developer Zone™, and NI SoftMotion™ are trademarks of
National Instruments Corporation. Product and company names mentioned herein are trademarks or trade names of their respective companies.

For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents . txt file on ”mm
our CD, orni. /patents.
y o com/patents 371331A-01 Sep04

© 2004 National Instruments Corp. All rights reserved.

	Getting Started with NI SoftMotion Development Module for LabVIEW
	Contents
	Introduction
	Figure 1. Possible Combinations of the NI SoftMotion Development Module and NI Hardware

	Conventions
	NI SoftMotion Development Module Components
	Table 1. NI SoftMotion Development Module Requirements and Uses

	System Requirements
	Installing the NI SoftMotion Development Module
	Additional Installation Instructions for RIO Users

	NI SoftMotion Development Module Documentation
	Typical Motion System
	Figure 2. Three Loops of a Typical Motion Control System
	Supervisory Control
	Trajectory Generator
	Spline Engine
	Control Loop
	I/O
	Table 2. Encoder VIs

	Types of Moves
	Arc Moves
	Table 3. NI SoftMotion Development Module Arc Move Function

	Straight-Line Moves
	Table 4. NI SoftMotion Development Module Straight-Line Move Function

	Blending
	Figure 3. Blending Two Moves
	Table 5. NI SoftMotion Development Module Blending Functions

	Contouring
	Table 6. NI SoftMotion Development Module Contouring Functions

	NI SoftMotion Development Module Examples
	Compact FieldPoint
	cFP Motion Loop VI
	Figure 4. cFP Motion Loop VI Block Diagram
	Table 7. Description of the cFP Motion Loop VI Block Diagram
	Application VI
	Figure 5. cFP Main VI Block Diagram
	Table 8. Description of the cFP Main VI Block Diagram

	M Series DAQ Device
	M Series Motion Loop VI
	Figure 6. M Series Motion Loop VI Block Diagram
	Table 9. Description of the M Series Device Motion Loop VI Block Diagram
	Application VI
	Figure 7. M Series Gantry Cycle VI Block Diagram
	Table 10. Description of M Series Gantry Cycle VI Block Diagram

	cRIO-9104
	cRIO Motion Loop VI
	Figure 8. cRIO Motion Loop VI Block Diagram
	Table 11. Description of cRIO Motion Loop VI Block Diagram
	Application VI
	Figure 9. cRIO Gantry Cycle VI Block Diagram
	Table 12. Description of cRIO Gantry Cycle VI Block Diagram

